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 Algo- Ways for Data transformation 

 

 Data structure-  
◦ Stores data 

◦ makes algorithm simpler 

◦ easier to maintain & often faster. 

 



 Sophisticated data str- simpler the algo 

 Simple algo- less expensive, less code 

 Logic is simple- modifications are less likely 
to introduce errors 

 Easier to repair defects, make modifications, 
or add enhancements 

 Ex- 1. array 2. Stack ex- pile of plates, box of 
books 3. Non-Linear data str- Tree- used for 
indexing, routing table 

 



Section 1: Arrays , Stack , Queue, Linked List 
 

 Single and Multidimensional arrays, Time & Space Complexity 
Analysis.  

 Sorting Techniques: Insertion, Bucket, Merge, Quick and heap 
sort.  

 Search techniques Binary  search, Fibonacci search.  
 Linked Lists: Dynamic memory allocation, Singly Linked Lists, 

Doubly linked Lists, Circular liked lists, and Generalized linked 
lists, Applications of Linked list.  

 Stack: stack representation using array and Linked list. 
Applications of stack: Recursion, Validity of parentheses, 
Expression conversions and evaluations, mazing problem.  

 Queue: representation using array and Linked list, Types of 
queue, Applications of Queue: Job Scheduling, Josephus problem 
etc. 

 



Section2: Trees, Graphs, Hashing 
 

 Trees:- Basic terminology, representation using array and linked 
list, Tree Traversals: Recursive And Non recursive, Operations on 
binary tree: Finding Height, Leaf nodes, counting no of Nodes 
etc., Construction of binary tree from traversals, Binary Search 
trees(BST): Insertion, deletion of a node from BST. Threaded 
Binary tree (TBT): Creation and traversals on TBT, AVL tree.  

 Graph:-Terminology and representation, Traversals, Connected 
components and Spanning trees: Prims and Kruskal‟s Algorithm, 
Shortest Paths and Transitive Closures: Single Source All 
destinations (Dijkstra‟sAlgorithm), all pair shortest path 
algorithm, Topological Sort.  

 Hasing:- Hashing techniques: Hash table, Hash functions, and 
Collision, Cuckoo Hashing. 

 



 An Array is a collection of variables of the 
same type that are referred to through a 
common name. 

 Declaration 
type var_name[size] 

 

e.g   
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int A[6]; 
double d[15]; 



After declaration, array contains some garbage 
value. 

 

Static initialization 

 

Run time initialization 
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int month_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; 

int i; 
int A[6]; 
for(i = 0; i < 6; i++) 
 A[i] = 6 - i; 



int A[6]; 

 

 

6 elements of 4 bytes each, 
total size = 6 x 4 bytes = 24 bytes 

Read an element 

 
Write to an element 
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A[0] A[1] A[2] A[3] A[4] A[5] 

0x100
0 

0x100
4 

0x100
8 

0x101
2 

0x101
6 

0x102
0 

6 5 4 3 2 1 

int tmp = A[2]; 

A[3] = 5; 



 No “Strings” keyword 

 A string is an array of characters. 

     OR 
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char string*+ = “hello world”; 
char *string = “hello world”; 



 

 

• Compiler has to know where the string ends 

• „\0‟ denotes the end of string 

 

Some more characters (do $man ascii): 

„\n‟ = new line, „\t‟ = horizontal tab, „\v‟ = 
vertical tab, „\r‟ = carriage return 
„A‟ = 0x41, „a‟ = 0x61, „\0‟ = 0x00 
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char string*+ = “hello world”; 
printf(“%s”, string); 



• A char pointer points to a single byte. 

• An int pointer points to first of the four bytes. 

• A pointer itself has an address where it is stored 
in the memory. Pointers are usually four bytes. 

 

 * is called the dereference operator 

• *p gives the value pointed by p 

           4 i 

     p 

• & (ampersand) is called the reference operator 

• &i returns the address of variable i 
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int *p;  int* p; 

int i = 4; 
p = &i;  



 A 32-bit system has 32 bit address space. 

 To store any address, 32 bits are required. 

 

 Pointer arithmetic : p+1 gives the next 
memory location assuming cells are of the 
same type as the base type of p. 
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int *p, x = 20; 
p = &x; 
printf("p      = %p\n", p); 
printf("p+1 = %p\n", (int*)p+1); 
printf("p+1 = %p\n", (char*)p+1); 
printf("p+1 = %p\n", (float*)p+1); 
printf("p+1 = %p\n", (double*)p+1); 
Sample output: 
p      = 0022FF70 
p+1 = 0022FF74 
p+1 = 0022FF71 
p+1 = 0022FF74 
p+1 = 0022FF78 
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 Pointers and arrays are tightly coupled. 

char a[] = “Hello World”; 

char *p = &a[0]; 

15 
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 Idea: 
◦ Repeatedly pass through the array 

◦ Swaps adjacent elements that are out of order 

 

 

 

 

 Easier to implement, but slower than 
Insertion sort 

1 2 3 n 

i 

1 3 2 9 6 4 8 

j 
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1 3 2 9 6 4 8 

i = 1 j 

3 1 2 9 6 4 8 

i = 1 j 

3 2 1 9 6 4 8 

i = 1 j 

3 2 9 1 6 4 8 

i = 1 j 

3 2 9 6 1 4 8 

i = 1 j 

3 2 9 6 4 1 8 

i = 1 j 

3 2 9 6 4 8 1 

i = 1 j 

3 2 9 6 4 8 1 

i = 2 j 

3 9 6 4 8 2 1 

i = 3 j 

9 6 4 8 3 2 1 

i = 4 j 

9 6 8 4 3 2 1 

i = 5 j 

9 8 6 4 3 2 1 

i = 6 j 

9 8 6 4 3 2 1 

i = 7 

j 
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Alg.: BUBBLESORT(A) 

 for i  1 to length[A] 

  do for j  length[A] downto i + 1 
            do if A[j] < A[j -1] 

           then exchange A[j]  A[j-1]  

1 3 2 9 6 4 8 

i = 1 j 

i 



int d[3][2]; 

 

Access the point 1, 2 of the array: 
d[1][2] 

 

Initialize (without loops): 

int d[3][2] = {{1, 2}, {4, 5}, {7, 8}}; 
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d[0][0] d[0][1] d[0][2] d[0][3] 

d[1][0] d[1][1] d[1][2] d[1][3] 

d[2][0] d[2][1] d[2][2] d[2][3] 
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A Multidimensional array is stored in a row major format. 
A two dimensional case: 
  next memory element to d[0][3] is d[1][0] 

What about memory addresses sequence of a three 
dimensional array? 
 next memory element to t[0][0][0] is t[0][0][1] 





 Arrangement of data items in ascending or 
descending order. 

 For unstructured data or records, keys are 
used to distinguish or sort items. 

 Ex. Insertion, selection, bubble, merge etc. 
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 Idea: like sorting a hand of playing cards 

◦ Start with an empty left hand and the cards facing 

down on the table. 

◦ Remove one card at a time from the table, and 

insert it into the correct position in the left hand 

 compare it with each of the cards already in the hand, 

from right to left 

◦ The cards held in the left hand are sorted 

 these cards were originally the top cards of the pile on 

the table 
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To insert 12, we need to 
make room for it by 
moving first 36 and then 
24. 
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26 



27 

5      2      4      6      1      3 

input array  

left sub-array right sub-array 

at each iteration, the array is divided in two sub-arrays: 

sorted unsorted 
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Alg.: INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 
        Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 
       while i > 0 and A[i] > key 
   do A[i + 1] ← A[i] 
         i ← i – 1 
       A[i + 1] ← key 
 Insertion sort – sorts the elements in place 

a8 a7 a6 a5 a4 a3 a2 a1 

1 2 3 4 5 6 7 8 

key 
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cost  times 
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INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 
    Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 

tj: # of times the while statement is executed at iteration j  
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 Idea: 
◦ Find the smallest element in the array 

◦ Exchange it with the element in the first position 

◦ Find the second smallest element and exchange it 
with the element in the second position 

◦ Continue until the array is sorted 

 Disadvantage: 
◦ Running time depends only slightly on the amount 

of order in the file 
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1 3 2 9 6 4 8 

8 3 2 9 6 4 1 

8 3 4 9 6 2 1 

8 6 4 9 3 2 1 

8 9 6 4 3 2 1 

8 6 9 4 3 2 1 

9 8 6 4 3 2 1 

9 8 6 4 3 2 1 
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Alg.: SELECTION-SORT(A) 

 n ← length[A] 
 for j ← 1 to n - 1 
  do smallest ← j 
        for i ← j + 1 to n 
      do if A[i] < A[smallest] 
       then smallest ← i 
        exchange A[j] ↔ A[smallest] 
 

1 3 2 9 6 4 8 
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n2/2  
comparisons 

Alg.: SELECTION-SORT(A) 

 n ← length[A] 

   for j ← 1 to n - 1 

  do smallest ← j 

        for i ← j + 1 to n 

      do if A[i] < A[smallest] 

       then smallest ← i 

        exchange A[j] ↔ A[smallest] 

cost  times 
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 Insertion sort 
◦ Design approach: 

◦ Sorts in place: 

◦ Best case: 

◦ Worst case:  

 

 

 Bubble Sort 
◦ Design approach: 

◦ Sorts in place: 

◦ Running time: 

 

Yes 

(n) 

(n2) 

incremental 

Yes 

(n2) 

incremental 
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 Selection sort 
◦ Design approach: 

◦ Sorts in place: 

◦ Running time:  

 

 

 Merge Sort 
◦ Design approach: 

◦ Sorts in place: 

◦ Running time: 

Yes 

(n2) 

incremental 

No 

divide and conquer 



 Bucket sort works by partitioning the 
elements into buckets and the return the 
result 

 Buckets are assigned based on each 
element‟s search key 

 To return the result, concatenate each bucket 
and return as a single array 

 



 Some variations 
◦ Make enough buckets so that each will only hold 

one element, use a count for duplicates 

◦ Use fewer buckets and then sort the contents of 
each bucket 

 

 The more buckets you use, the faster the 
algorithm will run but it uses more memory 



 Time complexity is reduced when the number 
of items per bucket is evenly distributed and 
as close to 1 per bucket as possible 
 

 Buckets require extra space, so we are 
trading increased space consumption for a 
lower time complexity 
 

 In fact Bucket Sort beats all other sorting 
routines in time complexity but can require a 
lot of space 

 



 One value per bucket: 



Multiple items per bucket: 

 

 



In array form: 
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 Divide the problem into a number of sub-problems 

◦ Similar sub-problems of smaller size 

 Conquer the sub-problems 

◦ Solve the sub-problems recursively 

◦ Sub-problem size small enough  solve the problems in 

straightforward manner 

 Combine the solutions of the sub-problems 

◦ Obtain the solution for the original problem 
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 To sort an array A[p . . r]: 

 Divide 

◦ Divide the n-element sequence to be sorted into 
two subsequences of n/2 elements each 

 Conquer 

◦ Sort the subsequences recursively using merge sort 

◦ When the size of the sequences is 1 there is 

nothing more to do 

 Combine 

◦ Merge the two sorted subsequences 
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Alg.: MERGE-SORT(A, p, r) 

 if p < r       Check for base case 

    then q ← (p + r)/2     Divide 

  MERGE-SORT(A, p, q)    Conquer 

  MERGE-SORT(A, q + 1, r)    Conquer 

  MERGE(A, p, q, r)     Combine 

 

 Initial call: MERGE-SORT(A, 1, n) 

1 2 3 4 5 6 7 8 

6 2 3 1 7 4 2 5 

p r q 
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1 2 3 4 5 6 7 8 

q = 4 6 2 3 1 7 4 2 5 

1 2 3 4 

7 4 2 5 

5 6 7 8 

6 2 3 1 

1 2 

2 5 

3 4 

7 4 

5 6 

3 1 

7 8 

6 2 

1 

5 

2 

2 

3 

4 

4 

7 1 

6 

3 

7 

2 

8 

6 

5 

Divide 
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1 

5 

2 

2 

3 

4 

4 

7 1 

6 

3 

7 

2 

8 

6 

5 

1 2 3 4 5 6 7 8 

7 6 5 4 3 2 2 1 

1 2 3 4 

7 5 4 2 

5 6 7 8 

6 3 2 1 

1 2 

5 2 

3 4 

7 4 

5 6 

3 1 

7 8 

6 2 

Conquer 
and 
Merge 
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6 2 5 3 7 4 1 6 2 7 4 

1 2 3 4 5 6 7 8 9 10 11 

q = 6 

4 1 6 2 7 4 

1 2 3 4 5 6 

6 2 5 3 7 

7 8 9 10 11 

q = 9 q = 3 

2 7 4 

1 2 3 

4 1 6 

4 5 6 

5 3 7 

7 8 9 

6 2 

10 11 

7 4 

1 2 

2 

3 

1 6 

4 5 

4 

6 

3 7 

7 8 

5 

9 

2 

10 

6 

11 

4 

1 

7 

2 

6 

4 

1 

5 

7 

7 

3 

8 

Divide 
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7 7 6 6 5 4 4 3 2 2 1 

1 2 3 4 5 6 7 8 9 10 11 

7 6 4 4 2 1 

1 2 3 4 5 6 

7 6 5 3 2 

7 8 9 10 11 

7 4 2 

1 2 3 

6 4 1 

4 5 6 

7 5 3 

7 8 9 

6 2 

10 11 

2 

3 

4 

6 

5 

9 

2 

10 

6 

11 

4 

1 

7 

2 

6 

4 

1 

5 

7 

7 

3 

8 

7 4 

1 2 

6 1 

4 5 

7 3 

7 8 

Conquer 
and 
Merge 
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 Input: Array A and indices p, q, r such that    

p ≤ q < r 

◦ Subarrays A[p . . q] and A[q + 1 . . r] are sorted 

 Output: One single sorted subarray A[p . . 

r] 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 
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 Idea for merging: 

◦ Two piles of sorted cards 

 Choose the smaller of the two top cards 

 Remove it and place it in the output pile 

◦ Repeat the process until one pile is empty 

◦ Take the remaining input pile and place it face-

down onto the output pile 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 

A1 A[p, q]                       

A2 A[q+1, r]                       

A[p, r]                       
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Alg.: MERGE(A, p, q, r) 

1. Compute n1 and n2 

2. Copy the first n1 elements into                    
L[1 . . n1 + 1] and  the next n2 elements into R[1 . . n2 
+ 1] 

3. L[n1 + 1] ← ;     R[n2 + 1] ←  

4.  i ← 1;    j ← 1 

5.  for k ← p to r 
6.        do if L[ i ] ≤ R[ j ] 

7.              then A[k] ← L[ i ] 

8.                       i ←i + 1 
9.              else A[k] ← R[ j ] 

10.                       j ← j + 1 

p q 

7 5 4 2 

6 3 2 1 

r q + 1 

L 

R 

 

 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 

n1 n2 



void merge(int a[], int low, int 
high, int mid) 
{ 
  int i,j,k,c[max]; 
  i=low; 
  j=mid+1; 
  k=0; 
while(i<=mid) && (j<=high) 
{ 
  if(a[i]<a[j]) 
    c[k]=a[i++]; 
else 
    c[k]=a[j++]; 
 k++; 
} 
while(i<=mid) 
   c[k++]=a[i++]; 
while(j<=high) 
     c[k++]=a[j++]; 
for(i=low,j=0;i<=high;i++,j++) 
{ 
a[i]=c[j]; 
} 
} 

 

void mergesort(int a[], int low, int high) 
{ 
int mid; 
if(low<high) 
   { 
 mid=(low+high)/2; 
 mergesort(a,low,mid); 
 mergesort(a,mid+1,high); 
 merge(a,low,high,mid); 
    } 
} 
 



Given an array of n elements (e.g., integers): 

 If array only contains one element, return 

 Else 
◦ pick one element to use as pivot. 

◦ Partition elements into two sub-arrays: 
 Elements less than or equal to pivot 

 Elements greater than pivot 

◦ Quicksort two sub-arrays 

◦ Return results 



We are given array of n integers to sort: 

40 20 10 80 60 50 7 30 100 



There are a number of ways to pick the pivot 
element.  In this example, we will use the first 
element in the array: 

40 20 10 80 60 50 7 30 100 



Given a pivot, partition the elements of the 
array such that the resulting array consists 
of:  

1. One sub-array that contains elements >= pivot  
2. Another sub-array that contains elements < 

pivot 
 

The sub-arrays are stored in the original data 
array.   

 
Partitioning loops through, swapping elements 

below/above pivot. 
 



40 20 10 80 60 50 7 30 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 



40 20 10 80 60 50 7 30 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

  ++too_big_index 

 



40 20 10 80 60 50 7 30 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

  ++too_big_index 

 



40 20 10 80 60 50 7 30 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

  ++too_big_index 

 



40 20 10 80 60 50 7 30 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

 

 

 



40 20 10 80 60 50 7 30 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

 

 

 



40 20 10 80 60 50 7 30 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

3. If too_big_index < too_small_index 

 swap data[too_big_index] and data[too_small_index] 

 

 

 



40 20 10 30 60 50 7 80 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

3. If too_big_index < too_small_index 

 swap data[too_big_index] and data[too_small_index] 

 

 

 



40 20 10 30 60 50 7 80 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

3. If too_big_index < too_small_index 

 swap data[too_big_index] and data[too_small_index] 

4. While too_small_index > too_big_index, go to 1. 

 

 

 



40 20 10 30 60 50 7 80 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

3. If too_big_index < too_small_index 

 swap data[too_big_index] and data[too_small_index] 

4. While too_small_index > too_big_index, go to 1. 

 

 

 



40 20 10 30 60 50 7 80 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

3. If too_big_index < too_small_index 

 swap data[too_big_index] and data[too_small_index] 

4. While too_small_index > too_big_index, go to 1. 

 

 

 



40 20 10 30 60 50 7 80 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

3. If too_big_index < too_small_index 

 swap data[too_big_index] and data[too_small_index] 

4. While too_small_index > too_big_index, go to 1. 

 

 

 



40 20 10 30 60 50 7 80 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

too_big_index too_small_index 

1. While data[too_big_index] <= data[pivot] 

 ++too_big_index 

2. While data[too_small_index] > data[pivot] 

 --too_small_index 

3. If too_big_index < too_small_index 

 swap data[too_big_index] and data[too_small_index] 

4. While too_small_index > too_big_index, go to 1. 

 

 

 



40 20 10 30 60 50 7 80 100 pivot_index = 0 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 
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7 20 10 30 40 50 60 80 100 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

<= data[pivot] > data[pivot] 



7 20 10 30 40 50 60 80 100 

[0]    [1]   [2]    [3]   [4]   [5]    [6]   [7]   [8] 

<= data[pivot] > data[pivot] 
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 Def: Full binary tree = a 
binary tree in which each 
node is either a leaf or has 
degree exactly 2. 

 
 

 Def: Complete binary tree = a 
binary tree in which all 
leaves are on the same level 
and all internal nodes have 
degree 2. 

Full binary tree 
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Complete binary tree 
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9 10 
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 Def: A heap is a nearly complete binary tree 
with the following two properties: 
◦ Structural property: all levels are full, except 

possibly the last one, which is filled from left to 
right 

◦ Order (heap) property: for any node x 
    Parent(x) ≥ x 

Heap 

5 

7 

8 

4 

2 

From the heap 
property, it follows 
that: 
“The root is the 
maximum  
element of the heap!” 

A heap is a binary tree that is filled in order 
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 A heap can be stored as an 

array A. 

◦ Root of tree is A[1] 

◦ Left child of A[i] = A[2i] 

◦ Right child of A[i] = A[2i + 1] 

◦ Parent of A[i] = A[ i/2 ] 

◦ Heapsize[A] ≤ length[A] 

 The elements in the 

subarray A[(n/2+1) .. n] 

are leaves 
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 Max-heaps (largest element at root), have the 

max-heap property:  

◦ for all nodes i, excluding the root:  

   A[PARENT(i)] ≥ A[i] 

 

 Min-heaps (smallest element at root), have 

the min-heap property: 

◦ for all nodes i, excluding the root:  

   A[PARENT(i)] ≤ A[i] 
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 New nodes are always inserted at the bottom 

level (left to right) 

 Nodes are removed from the bottom level 

(right to left) 
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 Maintain/Restore the max-heap property 

◦ MAX-HEAPIFY 

 Create a max-heap from an unordered array 

◦ BUILD-MAX-HEAP 

 Sort an array in place 

◦ HEAPSORT 

 Priority queues 
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 Suppose a node is smaller than a 
child 
◦ Left and Right subtrees of i are max-

heaps 

 To eliminate the violation: 
◦ Exchange with larger child 

◦ Move down the tree 

◦ Continue until node is not smaller than 
children 
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MAX-HEAPIFY(A, 2, 10) 

A[2] violates the heap property 

A[2]  A[4] 

A[4] violates the heap property 

A[4]  A[9] 

Heap property restored 
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 Assumptions: 
◦ Left and Right 

subtrees of i 
are max-heaps 

◦ A[i] may be 
smaller than its 
children 

 

Alg: MAX-HEAPIFY(A, i, n) 

1. l ← LEFT(i) 

2. r ← RIGHT(i) 

3. if l ≤ n and A[l] > A[i] 

4.    then largest ←l 

5.    else largest ←i 

6. if r ≤ n and A[r] > A[largest] 

7.    then largest ←r 

8. if largest  i 

9.    then exchange A[i] ↔ A[largest] 

10.            MAX-HEAPIFY(A, largest, 
n) 
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 Goal: 

◦ Sort an array using heap representations 

 Idea: 

◦ Build a max-heap from the array 

◦ Swap the root (the maximum element) with the last 

element in the array 

◦ “Discard” this last node by decreasing the heap size 

◦ Call MAX-HEAPIFY on the new root 

◦ Repeat this process until only one node remains  
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MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2) 

MAX-HEAPIFY(A, 1, 1) 
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1.  BUILD-MAX-HEAP(A) 

2.  for i ← length[A] downto 2 

3.       do exchange A[1] ↔ A[i] 

4.            MAX-HEAPIFY(A, 1, i - 1) 

 

 Running time: O(nlgn) --- Can 

be shown to be Θ(nlgn) 

 

O(n) 

O(lgn) 

n-1 times 
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 Binary search.   Given value and sorted array 
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low = 0; 
high = length - 1; 
 
    while (low <= high) { 
         mid = (low + high) / 2; 
        if (a[mid] < target) { 
            low = mid + 1; 
        } else if (a[mid] > target) { 
            high = mid - 1; 
        } else { 
            return mid;   // target found 
        } 
    } 

 



Similarities with Binary Search: 
 Works for sorted arrays 
 A Divide and Conquer Algorithm. 
 Has Log n time complexity. 
Differences with Binary Search: 
 Fibonacci Search divides given array in unequal parts 
 Binary Search uses division operator to divide range. 

Fibonacci Search doesn‟t use /, but uses + and -. The 
division operator may be costly on some CPUs. 

 Fibonacci Search examines relatively closer elements 
in subsequent steps. So when input array is big that 
cannot fit in CPU cache or even in RAM, Fibonacci 
Search can be useful. 
 
 



 Fibonacci Numbers are recursively defined as 
F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1. 
First few Fibinacci Numbers are 0, 1, 1, 2, 3, 
5, 8, 13, 21, 34, 55, 89, 144, … 

 Below observation is used for range 
elimination, and hence for the O(log(n)) 
complexity. 

 F(n - 2) &approx; (1/3)*F(n) and F(n - 1) 
&approx; (2/3)*F(n). 



 Let the searched element be x. 
 The idea is to first find the smallest 

Fibonacci number that is greater than or 
equal to the length of given array. Let the 
found Fibonacci number be fib (m‟th 
Fibonacci number). We use (m-2)‟th 
Fibonacci number as the index (If it is a 
valid index). Let (m-2)‟th Fibonacci 
Number be i, we compare arr[i] with x, if x 
is same, we return i. Else if x is greater, we 
recur for subarray after i, else we recur for 
subarray before i. 
 



 Below is the complete algorithm 
Let arr[0..n-1] be the input array and element to be searched be x. 

 Find the smallest Fibonacci Number greater than or equal to n. Let 
this number be fibM [m‟th Fibonacci Number]. Let the two Fibonacci 
numbers preceding it be fibMm1 [(m-1)‟th Fibonacci Number] and 
fibMm2 [(m-2)‟th Fibonacci Number]. 

 While the array has elements to be inspected: 
◦ Compare x with the last element of the range covered by fibMm2 
◦ If x matches, return index 
◦ Else If x is less than the element, move the three Fibonacci variables two 

Fibonacci down, indicating elimination of approximately rear two-third of 
the remaining array. 

◦ Else x is greater than the element, move the three Fibonacci variables one 
Fibonacci down. Reset offset to index. Together these indicate elimination 
of approximately front one-third of the remaining array. 

 Since there might be a single element remaining for comparison, 
check if fibMm1 is 1. If Yes, compare x with that remaining element. 
If match, return index. 
 



 Ex  

A={10,22,35,40,45,50,80,82,85,90,100},  

 

 

X=85 

N=11 

Fib=0,1,1,2,3,5,8,13,21,34 

  Fib(7)=13  >11 

 (m-1)= 8, (m-2)=5 

 

1 2 3 4 5 6 7 8 9 10 11 

10 22 35 40 45 50 80 82 85 90 100 



 i=min(offset+m2,n) 

 Offset-It marks the range that has been 
eliminated, starting from the front. We will 
update it time to time. 

  
 

 



Algorithm Input Output 

An algorithm is a step-by-step procedure for 
solving a problem in a finite amount of time. 



 Given 2 or more algorithms to solve the 
same problem, how do we select the best 
one? 

 Some criteria for selecting an algorithm 
1) Is it easy to implement, understand, modify? 
2) How long does it take to run it to completion? 
3) How much of computer memory does it use? 

 Software engineering is primarily 
concerned with the first criteria 

 In this course we are interested in the 
second and third criteria 
 

 



Analysis of Algorithms 

1
1
5 

 Time complexity 
◦ The amount of time that an algorithm needs to 

run to completion 

 Space complexity 
◦ The amount of memory an algorithm needs to 

run 

 We will occasionally look at space 
complexity, but we are mostly interested in 
time complexity in this course 

 Thus in this course the better algorithm is 
the one which runs faster (has smaller time 
complexity) 
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 Most algorithms transform input objects into 
output objects 

 The running time of an algorithm typically 
grows with the input size 
 idea: analyze running time as a function of input size 

sorting 
algorithm 

5 1 3 2 1 3 2 5 

input object output object 
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 Even on inputs of the same size, running time 
can be very different 
◦ Example: algorithm that finds the first prime number 

in an array by scanning it left to right 

 Idea: analyze running time in the  
 best case  

 worst case 

 average case 
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 Best case running 
time is usually useless 

 Average case time is 
very useful but often 
difficult to determine 

 We focus on the worst 
case running time 
◦ Easier to analyze 
◦ Crucial to applications 

such as games, finance 
and robotics 
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 When we analyze algorithms, we should 
employ mathematical techniques that 
analyze algorithms independently of 
specific implementations, computers, or 
data. 
 

 To analyze algorithms: 
◦ First, we start to count the number of 

significant operations in a particular solution 
to assess its efficiency. 

◦ Then, we will express the efficiency of 
algorithms using growth functions. 
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 Each operation in an algorithm (or a program) has a 
cost.  

   Each operation takes a certain of time. 
 

 count = count + 1;   take a certain amount of time, but it is 
constant 

 

A sequence of  operations: 
 

 count = count + 1;  Cost: c1 

 sum = sum + count;  Cost: c2 

   

   Total Cost = c1 + c2 
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Example: Simple If-Statement 

     Cost  Times 

 if (n < 0)  c1     1 

    absval = -n  c2     1 

 else    

  absval = n;  c3     1  

  

Total Cost  <=  c1 + max(c2,c3) 
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Example: Simple Loop 

       Cost  Times 

 i = 1;      c1     1 

 sum = 0;      c2     1 

 while (i <= n) {    c3     n+1 

  i = i + 1;     c4     n  

  sum = sum + i;    c5     n 

 } 

 

Total Cost  =  c1 + c2 + (n+1)*c3 + n*c4 + n*c5 

  The time required for this algorithm is proportional 
to n 
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Example: Nested Loop 
      Cost  Times 

 i=1;     c1    1 

 sum = 0;      c2    1 

 while (i <= n) {    c3    n+1 

  j=1;     c4    n 

  while (j <= n) {    c5    n*(n+1) 

      sum = sum + i;  c6    n*n 

      j = j + 1;     c7    n*n 

    } 

    i = i +1;    c8    n 

 } 

Total Cost  =  c1 + c2 + (n+1)*c3 + n*c4 + 
n*(n+1)*c5+n*n*c6+n*n*c7+n*c8 

  The time required for this algorithm is proportional to n2 
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 Loops: The running time of a loop is at most the 
running time of the statements inside of that loop 
times the number of iterations. 

  Nested Loops: Running time of a nested loop 
containing a statement in the inner most loop is the 
running time of statement multiplied by the product 
of the sized of all loops.  

 Consecutive Statements: Just add the running times 
of those consecutive statements.  

 If/Else: Never more than the running time of the test 
plus the larger of running times of S1 and S2.  
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 We measure an algorithm‟s time requirement as a function 
of the problem size. 
◦ Problem size depends on the application: e.g. number of elements 

in a list for a  sorting algorithm, the number disks for towers of 
hanoi. 

 So, for instance, we say that (if the problem size is n) 
◦ Algorithm A requires 5*n2 time units to solve a problem of size n. 
◦ Algorithm B requires 7*n  time units to solve a problem of size n. 

 The most important thing to learn is how quickly the 
algorithm‟s time requirement grows as a function of the 
problem size. 
◦ Algorithm A requires time proportional to n2. 
◦ Algorithm B requires time proportional to n. 

 An algorithm‟s proportional time requirement is known as 
growth rate.  

 We can compare the efficiency of two algorithms by 
comparing their growth rates. 
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Time requirements as a function  of the problem size n 
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Function Growth Rate Name 

c Constant 

log N Logarithmic 

log2N Log-squared 

N Linear 

N log N 

N2 Quadratic 

N3 Cubic 

2N Exponential 
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 The big-Oh notation gives an upper bound on the 
growth rate of a function 

 The statement “f(n) is O(g(n))” means that the 
growth rate of f(n) is no more than the growth 
rate of g(n) 

 We can use the big-Oh notation to rank functions 
according to their growth rate 

f(n) is O(g(n)) g(n) is O(f(n)) 

g(n) grows more Yes No 

f(n) grows more No Yes 

Same growth Yes Yes 


