
By
Shital Dongre

Asst. Prof.
IT Dept,

VIT, Pune

Data

Algo

Program

 Algo- Ways for Data transformation

 Data structure-
◦ Stores data

◦ makes algorithm simpler

◦ easier to maintain & often faster.

 Sophisticated data str- simpler the algo

 Simple algo- less expensive, less code

 Logic is simple- modifications are less likely
to introduce errors

 Easier to repair defects, make modifications,
or add enhancements

 Ex- 1. array 2. Stack ex- pile of plates, box of
books 3. Non-Linear data str- Tree- used for
indexing, routing table

Section 1: Arrays , Stack , Queue, Linked List

 Single and Multidimensional arrays, Time & Space Complexity
Analysis.

 Sorting Techniques: Insertion, Bucket, Merge, Quick and heap
sort.

 Search techniques Binary search, Fibonacci search.
 Linked Lists: Dynamic memory allocation, Singly Linked Lists,

Doubly linked Lists, Circular liked lists, and Generalized linked
lists, Applications of Linked list.

 Stack: stack representation using array and Linked list.
Applications of stack: Recursion, Validity of parentheses,
Expression conversions and evaluations, mazing problem.

 Queue: representation using array and Linked list, Types of
queue, Applications of Queue: Job Scheduling, Josephus problem
etc.

Section2: Trees, Graphs, Hashing

 Trees:- Basic terminology, representation using array and linked
list, Tree Traversals: Recursive And Non recursive, Operations on
binary tree: Finding Height, Leaf nodes, counting no of Nodes
etc., Construction of binary tree from traversals, Binary Search
trees(BST): Insertion, deletion of a node from BST. Threaded
Binary tree (TBT): Creation and traversals on TBT, AVL tree.

 Graph:-Terminology and representation, Traversals, Connected
components and Spanning trees: Prims and Kruskal‟s Algorithm,
Shortest Paths and Transitive Closures: Single Source All
destinations (Dijkstra‟sAlgorithm), all pair shortest path
algorithm, Topological Sort.

 Hasing:- Hashing techniques: Hash table, Hash functions, and
Collision, Cuckoo Hashing.

 An Array is a collection of variables of the
same type that are referred to through a
common name.

 Declaration
type var_name[size]

e.g

7

int A[6];
double d[15];

After declaration, array contains some garbage
value.

Static initialization

Run time initialization

8

int month_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

int i;
int A[6];
for(i = 0; i < 6; i++)
 A[i] = 6 - i;

int A[6];

6 elements of 4 bytes each,
total size = 6 x 4 bytes = 24 bytes

Read an element

Write to an element

9

A[0] A[1] A[2] A[3] A[4] A[5]

0x100
0

0x100
4

0x100
8

0x101
2

0x101
6

0x102
0

6 5 4 3 2 1

int tmp = A[2];

A[3] = 5;

 No “Strings” keyword

 A string is an array of characters.

 OR

10

char string*+ = “hello world”;
char *string = “hello world”;

• Compiler has to know where the string ends

• „\0‟ denotes the end of string

Some more characters (do $man ascii):

„\n‟ = new line, „\t‟ = horizontal tab, „\v‟ =
vertical tab, „\r‟ = carriage return
„A‟ = 0x41, „a‟ = 0x61, „\0‟ = 0x00

11

char string*+ = “hello world”;
printf(“%s”, string);

• A char pointer points to a single byte.

• An int pointer points to first of the four bytes.

• A pointer itself has an address where it is stored
in the memory. Pointers are usually four bytes.

 * is called the dereference operator

• *p gives the value pointed by p

 4 i

 p

• & (ampersand) is called the reference operator

• &i returns the address of variable i

12

int *p;  int* p;

int i = 4;
p = &i;

 A 32-bit system has 32 bit address space.

 To store any address, 32 bits are required.

 Pointer arithmetic : p+1 gives the next
memory location assuming cells are of the
same type as the base type of p.

13

int *p, x = 20;
p = &x;
printf("p = %p\n", p);
printf("p+1 = %p\n", (int*)p+1);
printf("p+1 = %p\n", (char*)p+1);
printf("p+1 = %p\n", (float*)p+1);
printf("p+1 = %p\n", (double*)p+1);
Sample output:
p = 0022FF70
p+1 = 0022FF74
p+1 = 0022FF71
p+1 = 0022FF74
p+1 = 0022FF78

14

 Pointers and arrays are tightly coupled.

char a[] = “Hello World”;

char *p = &a[0];

15

16

 Idea:
◦ Repeatedly pass through the array

◦ Swaps adjacent elements that are out of order

 Easier to implement, but slower than
Insertion sort

1 2 3 n

i

1 3 2 9 6 4 8

j

17

1 3 2 9 6 4 8

i = 1 j

3 1 2 9 6 4 8

i = 1 j

3 2 1 9 6 4 8

i = 1 j

3 2 9 1 6 4 8

i = 1 j

3 2 9 6 1 4 8

i = 1 j

3 2 9 6 4 1 8

i = 1 j

3 2 9 6 4 8 1

i = 1 j

3 2 9 6 4 8 1

i = 2 j

3 9 6 4 8 2 1

i = 3 j

9 6 4 8 3 2 1

i = 4 j

9 6 8 4 3 2 1

i = 5 j

9 8 6 4 3 2 1

i = 6 j

9 8 6 4 3 2 1

i = 7

j

18

Alg.: BUBBLESORT(A)

 for i  1 to length[A]

 do for j  length[A] downto i + 1
 do if A[j] < A[j -1]

 then exchange A[j]  A[j-1]

1 3 2 9 6 4 8

i = 1 j

i

int d[3][2];

Access the point 1, 2 of the array:
d[1][2]

Initialize (without loops):

int d[3][2] = {{1, 2}, {4, 5}, {7, 8}};

19

d[0][0] d[0][1] d[0][2] d[0][3]

d[1][0] d[1][1] d[1][2] d[1][3]

d[2][0] d[2][1] d[2][2] d[2][3]

20

A Multidimensional array is stored in a row major format.
A two dimensional case:
  next memory element to d[0][3] is d[1][0]

What about memory addresses sequence of a three
dimensional array?
 next memory element to t[0][0][0] is t[0][0][1]

 Arrangement of data items in ascending or
descending order.

 For unstructured data or records, keys are
used to distinguish or sort items.

 Ex. Insertion, selection, bubble, merge etc.

23

 Idea: like sorting a hand of playing cards

◦ Start with an empty left hand and the cards facing

down on the table.

◦ Remove one card at a time from the table, and

insert it into the correct position in the left hand

 compare it with each of the cards already in the hand,

from right to left

◦ The cards held in the left hand are sorted

 these cards were originally the top cards of the pile on

the table

24

To insert 12, we need to
make room for it by
moving first 36 and then
24.

25

26

27

5 2 4 6 1 3

input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

28

29

Alg.: INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]
 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1
 while i > 0 and A[i] > key
 do A[i + 1] ← A[i]
 i ← i – 1
 A[i + 1] ← key
 Insertion sort – sorts the elements in place

a8 a7 a6 a5 a4 a3 a2 a1

1 2 3 4 5 6 7 8

key

30

cost times

 c1 n

 c2 n-1

 0 n-1

 c4 n-1
 c5

 c6

 c7
 c8 n-1

 

n

j j
t

2

 


n

j j
t

2
)1(

 


n

j j
t

2
)1(

   )1(11)1()1()(
8

2

7

2

6

2

5421
 



nctctctcncncncnT

n

j

j

n

j

j

n

j

j

INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]
 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

tj: # of times the while statement is executed at iteration j

31

 Idea:
◦ Find the smallest element in the array

◦ Exchange it with the element in the first position

◦ Find the second smallest element and exchange it
with the element in the second position

◦ Continue until the array is sorted

 Disadvantage:
◦ Running time depends only slightly on the amount

of order in the file

32

1 3 2 9 6 4 8

8 3 2 9 6 4 1

8 3 4 9 6 2 1

8 6 4 9 3 2 1

8 9 6 4 3 2 1

8 6 9 4 3 2 1

9 8 6 4 3 2 1

9 8 6 4 3 2 1

33

Alg.: SELECTION-SORT(A)

 n ← length[A]
 for j ← 1 to n - 1
 do smallest ← j
 for i ← j + 1 to n
 do if A[i] < A[smallest]
 then smallest ← i
 exchange A[j] ↔ A[smallest]

1 3 2 9 6 4 8

34

n2/2
comparisons

Alg.: SELECTION-SORT(A)

 n ← length[A]

 for j ← 1 to n - 1

 do smallest ← j

 for i ← j + 1 to n

 do if A[i] < A[smallest]

 then smallest ← i

 exchange A[j] ↔ A[smallest]

cost times

 c1 1

 c2 n

 c3 n-1

 c4

 c5

 c6

 c7 n-1







1

1
)1(

n

j
jn







1

1
)(

n

j
jn







1

1
)(

n

j
jnn

exchanges

   
1 1 1

2

1 2 3 4 5 6 7

1 1 2

() (1) (1) (1) ()

n n n

j j j

T n c c n c n c n j c n j c n j c n n

  

  

                

35

 Insertion sort
◦ Design approach:

◦ Sorts in place:

◦ Best case:

◦ Worst case:

 Bubble Sort
◦ Design approach:

◦ Sorts in place:

◦ Running time:

Yes

(n)

(n2)

incremental

Yes

(n2)

incremental

36

 Selection sort
◦ Design approach:

◦ Sorts in place:

◦ Running time:

 Merge Sort
◦ Design approach:

◦ Sorts in place:

◦ Running time:

Yes

(n2)

incremental

No

divide and conquer

 Bucket sort works by partitioning the
elements into buckets and the return the
result

 Buckets are assigned based on each
element‟s search key

 To return the result, concatenate each bucket
and return as a single array

 Some variations
◦ Make enough buckets so that each will only hold

one element, use a count for duplicates

◦ Use fewer buckets and then sort the contents of
each bucket

 The more buckets you use, the faster the
algorithm will run but it uses more memory

 Time complexity is reduced when the number
of items per bucket is evenly distributed and
as close to 1 per bucket as possible

 Buckets require extra space, so we are
trading increased space consumption for a
lower time complexity

 In fact Bucket Sort beats all other sorting
routines in time complexity but can require a
lot of space

 One value per bucket:

Multiple items per bucket:

In array form:

43

 Divide the problem into a number of sub-problems

◦ Similar sub-problems of smaller size

 Conquer the sub-problems

◦ Solve the sub-problems recursively

◦ Sub-problem size small enough  solve the problems in

straightforward manner

 Combine the solutions of the sub-problems

◦ Obtain the solution for the original problem

44

 To sort an array A[p . . r]:

 Divide

◦ Divide the n-element sequence to be sorted into
two subsequences of n/2 elements each

 Conquer

◦ Sort the subsequences recursively using merge sort

◦ When the size of the sequences is 1 there is

nothing more to do

 Combine

◦ Merge the two sorted subsequences

45

Alg.: MERGE-SORT(A, p, r)

 if p < r Check for base case

 then q ← (p + r)/2 Divide

 MERGE-SORT(A, p, q) Conquer

 MERGE-SORT(A, q + 1, r) Conquer

 MERGE(A, p, q, r) Combine

 Initial call: MERGE-SORT(A, 1, n)

1 2 3 4 5 6 7 8

6 2 3 1 7 4 2 5

p r q

46

1 2 3 4 5 6 7 8

q = 4 6 2 3 1 7 4 2 5

1 2 3 4

7 4 2 5

5 6 7 8

6 2 3 1

1 2

2 5

3 4

7 4

5 6

3 1

7 8

6 2

1

5

2

2

3

4

4

7 1

6

3

7

2

8

6

5

Divide

47

1

5

2

2

3

4

4

7 1

6

3

7

2

8

6

5

1 2 3 4 5 6 7 8

7 6 5 4 3 2 2 1

1 2 3 4

7 5 4 2

5 6 7 8

6 3 2 1

1 2

5 2

3 4

7 4

5 6

3 1

7 8

6 2

Conquer
and
Merge

48

6 2 5 3 7 4 1 6 2 7 4

1 2 3 4 5 6 7 8 9 10 11

q = 6

4 1 6 2 7 4

1 2 3 4 5 6

6 2 5 3 7

7 8 9 10 11

q = 9 q = 3

2 7 4

1 2 3

4 1 6

4 5 6

5 3 7

7 8 9

6 2

10 11

7 4

1 2

2

3

1 6

4 5

4

6

3 7

7 8

5

9

2

10

6

11

4

1

7

2

6

4

1

5

7

7

3

8

Divide

49

7 7 6 6 5 4 4 3 2 2 1

1 2 3 4 5 6 7 8 9 10 11

7 6 4 4 2 1

1 2 3 4 5 6

7 6 5 3 2

7 8 9 10 11

7 4 2

1 2 3

6 4 1

4 5 6

7 5 3

7 8 9

6 2

10 11

2

3

4

6

5

9

2

10

6

11

4

1

7

2

6

4

1

5

7

7

3

8

7 4

1 2

6 1

4 5

7 3

7 8

Conquer
and
Merge

50

 Input: Array A and indices p, q, r such that

p ≤ q < r

◦ Subarrays A[p . . q] and A[q + 1 . . r] are sorted

 Output: One single sorted subarray A[p . .

r]

1 2 3 4 5 6 7 8

6 3 2 1 7 5 4 2

p r q

51

 Idea for merging:

◦ Two piles of sorted cards

 Choose the smaller of the two top cards

 Remove it and place it in the output pile

◦ Repeat the process until one pile is empty

◦ Take the remaining input pile and place it face-

down onto the output pile

1 2 3 4 5 6 7 8

6 3 2 1 7 5 4 2

p r q

A1 A[p, q]

A2 A[q+1, r]

A[p, r]

52

Alg.: MERGE(A, p, q, r)

1. Compute n1 and n2

2. Copy the first n1 elements into
L[1 . . n1 + 1] and the next n2 elements into R[1 . . n2
+ 1]

3. L[n1 + 1] ← ; R[n2 + 1] ← 

4. i ← 1; j ← 1

5. for k ← p to r
6. do if L[i] ≤ R[j]

7. then A[k] ← L[i]

8. i ←i + 1
9. else A[k] ← R[j]

10. j ← j + 1

p q

7 5 4 2

6 3 2 1

r q + 1

L

R





1 2 3 4 5 6 7 8

6 3 2 1 7 5 4 2

p r q

n1 n2

void merge(int a[], int low, int
high, int mid)
{
 int i,j,k,c[max];
 i=low;
 j=mid+1;
 k=0;
while(i<=mid) && (j<=high)
{
 if(a[i]<a[j])
 c[k]=a[i++];
else
 c[k]=a[j++];
 k++;
}
while(i<=mid)
 c[k++]=a[i++];
while(j<=high)
 c[k++]=a[j++];
for(i=low,j=0;i<=high;i++,j++)
{
a[i]=c[j];
}
}

void mergesort(int a[], int low, int high)
{
int mid;
if(low<high)
 {
 mid=(low+high)/2;
 mergesort(a,low,mid);
 mergesort(a,mid+1,high);
 merge(a,low,high,mid);
 }
}

Given an array of n elements (e.g., integers):

 If array only contains one element, return

 Else
◦ pick one element to use as pivot.

◦ Partition elements into two sub-arrays:
 Elements less than or equal to pivot

 Elements greater than pivot

◦ Quicksort two sub-arrays

◦ Return results

We are given array of n integers to sort:

40 20 10 80 60 50 7 30 100

There are a number of ways to pick the pivot
element. In this example, we will use the first
element in the array:

40 20 10 80 60 50 7 30 100

Given a pivot, partition the elements of the
array such that the resulting array consists
of:

1. One sub-array that contains elements >= pivot
2. Another sub-array that contains elements <

pivot

The sub-arrays are stored in the original data
array.

Partitioning loops through, swapping elements

below/above pivot.

40 20 10 80 60 50 7 30 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

40 20 10 80 60 50 7 30 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

40 20 10 80 60 50 7 30 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

40 20 10 80 60 50 7 30 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

40 20 10 80 60 50 7 30 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

40 20 10 80 60 50 7 30 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

40 20 10 80 60 50 7 30 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

40 20 10 30 60 50 7 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

40 20 10 30 60 50 7 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

40 20 10 30 60 50 7 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

40 20 10 30 60 50 7 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

40 20 10 30 60 50 7 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

40 20 10 30 60 50 7 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

40 20 10 30 60 50 7 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

 40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

5. Swap data[too_small_index] and data[pivot_index]

40 20 10 30 7 50 60 80 100 pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]

 ++too_big_index

2. While data[too_small_index] > data[pivot]

 --too_small_index

3. If too_big_index < too_small_index

 swap data[too_big_index] and data[too_small_index]

4. While too_small_index > too_big_index, go to 1.

5. Swap data[too_small_index] and data[pivot_index]

7 20 10 30 40 50 60 80 100 pivot_index = 4

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

7 20 10 30 40 50 60 80 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

<= data[pivot] > data[pivot]

7 20 10 30 40 50 60 80 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

<= data[pivot] > data[pivot]

85

 Def: Full binary tree = a
binary tree in which each
node is either a leaf or has
degree exactly 2.

 Def: Complete binary tree = a
binary tree in which all
leaves are on the same level
and all internal nodes have
degree 2.

Full binary tree

2

14 8

1

16

7

4

3

9 10

12

Complete binary tree

2

1

16

4

3

9 10

86

 Def: A heap is a nearly complete binary tree
with the following two properties:
◦ Structural property: all levels are full, except

possibly the last one, which is filled from left to
right

◦ Order (heap) property: for any node x
 Parent(x) ≥ x

Heap

5

7

8

4

2

From the heap
property, it follows
that:
“The root is the
maximum
element of the heap!”

A heap is a binary tree that is filled in order

87

 A heap can be stored as an

array A.

◦ Root of tree is A[1]

◦ Left child of A[i] = A[2i]

◦ Right child of A[i] = A[2i + 1]

◦ Parent of A[i] = A[i/2]

◦ Heapsize[A] ≤ length[A]

 The elements in the

subarray A[(n/2+1) .. n]

are leaves

88

 Max-heaps (largest element at root), have the

max-heap property:

◦ for all nodes i, excluding the root:

 A[PARENT(i)] ≥ A[i]

 Min-heaps (smallest element at root), have

the min-heap property:

◦ for all nodes i, excluding the root:

 A[PARENT(i)] ≤ A[i]

89

 New nodes are always inserted at the bottom

level (left to right)

 Nodes are removed from the bottom level

(right to left)

90

 Maintain/Restore the max-heap property

◦ MAX-HEAPIFY

 Create a max-heap from an unordered array

◦ BUILD-MAX-HEAP

 Sort an array in place

◦ HEAPSORT

 Priority queues

91

 Suppose a node is smaller than a
child
◦ Left and Right subtrees of i are max-

heaps

 To eliminate the violation:
◦ Exchange with larger child

◦ Move down the tree

◦ Continue until node is not smaller than
children

92

MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[2]  A[4]

A[4] violates the heap property

A[4]  A[9]

Heap property restored

93

 Assumptions:
◦ Left and Right

subtrees of i
are max-heaps

◦ A[i] may be
smaller than its
children

Alg: MAX-HEAPIFY(A, i, n)

1. l ← LEFT(i)

2. r ← RIGHT(i)

3. if l ≤ n and A[l] > A[i]

4. then largest ←l

5. else largest ←i

6. if r ≤ n and A[r] > A[largest]

7. then largest ←r

8. if largest  i

9. then exchange A[i] ↔ A[largest]

10. MAX-HEAPIFY(A, largest,
n)

94

 Goal:

◦ Sort an array using heap representations

 Idea:

◦ Build a max-heap from the array

◦ Swap the root (the maximum element) with the last

element in the array

◦ “Discard” this last node by decreasing the heap size

◦ Call MAX-HEAPIFY on the new root

◦ Repeat this process until only one node remains

95

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)

96

1. BUILD-MAX-HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1] ↔ A[i]

4. MAX-HEAPIFY(A, 1, i - 1)

 Running time: O(nlgn) --- Can

be shown to be Θ(nlgn)

O(n)

O(lgn)

n-1 times

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Algorithm maintains a[lo]  value  a[hi].

 Ex. Binary search for 33.

hi

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo hi mid

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo hi

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo mid hi

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo hi

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo hi mid

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo
hi

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo
hi

mid

 Binary search. Given value and sorted array
a[], find index i
such that a[i] = value, or report that no such
index exists.

 Invariant. Algorithm maintains a[lo]  value 
a[hi].

 Ex. Binary search for 33.

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

lo
hi

mid

low = 0;
high = length - 1;

 while (low <= high) {
 mid = (low + high) / 2;
 if (a[mid] < target) {
 low = mid + 1;
 } else if (a[mid] > target) {
 high = mid - 1;
 } else {
 return mid; // target found
 }
 }

Similarities with Binary Search:
 Works for sorted arrays
 A Divide and Conquer Algorithm.
 Has Log n time complexity.
Differences with Binary Search:
 Fibonacci Search divides given array in unequal parts
 Binary Search uses division operator to divide range.

Fibonacci Search doesn‟t use /, but uses + and -. The
division operator may be costly on some CPUs.

 Fibonacci Search examines relatively closer elements
in subsequent steps. So when input array is big that
cannot fit in CPU cache or even in RAM, Fibonacci
Search can be useful.

 Fibonacci Numbers are recursively defined as
F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1.
First few Fibinacci Numbers are 0, 1, 1, 2, 3,
5, 8, 13, 21, 34, 55, 89, 144, …

 Below observation is used for range
elimination, and hence for the O(log(n))
complexity.

 F(n - 2) ≈ (1/3)*F(n) and F(n - 1)
≈ (2/3)*F(n).

 Let the searched element be x.
 The idea is to first find the smallest

Fibonacci number that is greater than or
equal to the length of given array. Let the
found Fibonacci number be fib (m‟th
Fibonacci number). We use (m-2)‟th
Fibonacci number as the index (If it is a
valid index). Let (m-2)‟th Fibonacci
Number be i, we compare arr[i] with x, if x
is same, we return i. Else if x is greater, we
recur for subarray after i, else we recur for
subarray before i.

 Below is the complete algorithm
Let arr[0..n-1] be the input array and element to be searched be x.

 Find the smallest Fibonacci Number greater than or equal to n. Let
this number be fibM [m‟th Fibonacci Number]. Let the two Fibonacci
numbers preceding it be fibMm1 [(m-1)‟th Fibonacci Number] and
fibMm2 [(m-2)‟th Fibonacci Number].

 While the array has elements to be inspected:
◦ Compare x with the last element of the range covered by fibMm2
◦ If x matches, return index
◦ Else If x is less than the element, move the three Fibonacci variables two

Fibonacci down, indicating elimination of approximately rear two-third of
the remaining array.

◦ Else x is greater than the element, move the three Fibonacci variables one
Fibonacci down. Reset offset to index. Together these indicate elimination
of approximately front one-third of the remaining array.

 Since there might be a single element remaining for comparison,
check if fibMm1 is 1. If Yes, compare x with that remaining element.
If match, return index.

 Ex

A={10,22,35,40,45,50,80,82,85,90,100},

X=85

N=11

Fib=0,1,1,2,3,5,8,13,21,34

 Fib(7)=13 >11

 (m-1)= 8, (m-2)=5

1 2 3 4 5 6 7 8 9 10 11

10 22 35 40 45 50 80 82 85 90 100

 i=min(offset+m2,n)

 Offset-It marks the range that has been
eliminated, starting from the front. We will
update it time to time.



Algorithm Input Output

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

 Given 2 or more algorithms to solve the
same problem, how do we select the best
one?

 Some criteria for selecting an algorithm
1) Is it easy to implement, understand, modify?
2) How long does it take to run it to completion?
3) How much of computer memory does it use?

 Software engineering is primarily
concerned with the first criteria

 In this course we are interested in the
second and third criteria

Analysis of Algorithms

1
1
5

 Time complexity
◦ The amount of time that an algorithm needs to

run to completion

 Space complexity
◦ The amount of memory an algorithm needs to

run

 We will occasionally look at space
complexity, but we are mostly interested in
time complexity in this course

 Thus in this course the better algorithm is
the one which runs faster (has smaller time
complexity)

Analysis of Algorithms 116

 Most algorithms transform input objects into
output objects

 The running time of an algorithm typically
grows with the input size
 idea: analyze running time as a function of input size

sorting
algorithm

5 1 3 2 1 3 2 5

input object output object

Analysis of Algorithms 117

 Even on inputs of the same size, running time
can be very different
◦ Example: algorithm that finds the first prime number

in an array by scanning it left to right

 Idea: analyze running time in the
 best case

 worst case

 average case

Analysis of Algorithms 118

 Best case running
time is usually useless

 Average case time is
very useful but often
difficult to determine

 We focus on the worst
case running time
◦ Easier to analyze
◦ Crucial to applications

such as games, finance
and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case

average case

worst case

11
9

 When we analyze algorithms, we should
employ mathematical techniques that
analyze algorithms independently of
specific implementations, computers, or
data.

 To analyze algorithms:
◦ First, we start to count the number of

significant operations in a particular solution
to assess its efficiency.

◦ Then, we will express the efficiency of
algorithms using growth functions.

12
0

 Each operation in an algorithm (or a program) has a
cost.

  Each operation takes a certain of time.

 count = count + 1;  take a certain amount of time, but it is
constant

A sequence of operations:

 count = count + 1; Cost: c1

 sum = sum + count; Cost: c2

  Total Cost = c1 + c2

12
1

Example: Simple If-Statement

 Cost Times

 if (n < 0) c1 1

 absval = -n c2 1

 else

 absval = n; c3 1

Total Cost <= c1 + max(c2,c3)

12
2

Example: Simple Loop

 Cost Times

 i = 1; c1 1

 sum = 0; c2 1

 while (i <= n) { c3 n+1

 i = i + 1; c4 n

 sum = sum + i; c5 n

 }

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5

  The time required for this algorithm is proportional
to n

12
3

Example: Nested Loop
 Cost Times

 i=1; c1 1

 sum = 0; c2 1

 while (i <= n) { c3 n+1

 j=1; c4 n

 while (j <= n) { c5 n*(n+1)

 sum = sum + i; c6 n*n

 j = j + 1; c7 n*n

 }

 i = i +1; c8 n

 }

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 +
n*(n+1)*c5+n*n*c6+n*n*c7+n*c8

  The time required for this algorithm is proportional to n2

12
4

 Loops: The running time of a loop is at most the
running time of the statements inside of that loop
times the number of iterations.

 Nested Loops: Running time of a nested loop
containing a statement in the inner most loop is the
running time of statement multiplied by the product
of the sized of all loops.

 Consecutive Statements: Just add the running times
of those consecutive statements.

 If/Else: Never more than the running time of the test
plus the larger of running times of S1 and S2.

12
5

 We measure an algorithm‟s time requirement as a function
of the problem size.
◦ Problem size depends on the application: e.g. number of elements

in a list for a sorting algorithm, the number disks for towers of
hanoi.

 So, for instance, we say that (if the problem size is n)
◦ Algorithm A requires 5*n2 time units to solve a problem of size n.
◦ Algorithm B requires 7*n time units to solve a problem of size n.

 The most important thing to learn is how quickly the
algorithm‟s time requirement grows as a function of the
problem size.
◦ Algorithm A requires time proportional to n2.
◦ Algorithm B requires time proportional to n.

 An algorithm‟s proportional time requirement is known as
growth rate.

 We can compare the efficiency of two algorithms by
comparing their growth rates.

12
6

Time requirements as a function of the problem size n

CENG 213 Data Structures 127

Function Growth Rate Name

c Constant

log N Logarithmic

log2N Log-squared

N Linear

N log N

N2 Quadratic

N3 Cubic

2N Exponential

Analysis of Algorithms
12
8

 The big-Oh notation gives an upper bound on the
growth rate of a function

 The statement “f(n) is O(g(n))” means that the
growth rate of f(n) is no more than the growth
rate of g(n)

 We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

